10 research outputs found

    From CoA ester supply to a yeast communication toolkit in Saccharomyces cerevisiae

    Get PDF
    Saccharomyces cerevisiae is the most widely used eukaryotic chassis in synthetic biology, as hu-manity and yeast share a long and fruitful history. For synthetic biology applications, S. cerevisiae was extensively used for metabolic engineering as well as for the construction of artificial net-works. To contribute to the metabolic engineering achievements conducted in S. cerevisiae, we extended its metabolic capacities by providing non-native short-chain acyl-coenzyme A esters as metabolic precursors. In order to advance the construction of artificial networks to multicel-lular systems we provided a comprehensive yeast communication toolkit (YCTK), and demon-strated its usability for the rapid assembly of synthetic cell-cell communication systems. Engineered production of short-chain acyl-coenzyme A esters in Saccharomyces cerevisiae Globally, S. cerevisiae is one of the most commonly used chassis organisms in modern biotech-nology and constitutes a high economic value to the growing bioecomomy. With the objective to produce novel natural products in S. cerevisiae a bottleneck of the chassis was uncovered. Short-chain acyl-coenzyme A esters serve as intermediate compounds in fatty acid biosynthesis, and are building blocks for the production of polyketides, biopolymers, and other value-added chemicals. However, S. cerevisiae’s limited repertoire of short-chain acyl-CoAs effectively pre-vents its application as a production host for a plethora of natural products. To address and re-solve this limitation, we introduced metabolic pathways to five different acyl-CoA esters into S. cerevisiae. We engineered plasmid-based yeast strains that provide propionyl-CoA, methylmalonyl-CoA, n-butyryl-CoA, isovaleryl-CoA, and n-hexanoyl-CoA. For the production of propionyl-CoA and methylmalonyl-CoA, we reestablished a published feeding-dependent pro-duction route using the PrpE and Pcc enzymes to serve as benchmark for our feeding-independent production pathways that provided in our study comparable product concentra-tions. To ensure efficient extraction of the produced metabolites we established a yeast-specific metabolite extraction protocol to determine the intracellular acyl-CoA concentrations in the engineered strains. For the production of isovaleryl-CoA, we tested two different pathways but only obtained product formation from the alternative isovaleryl-CoA biosynthetic (AIB) pathway originating from Myxococcus xanthus and obtained 5.5±1.2 ”M isovaleryl-CoA. To our knowledge, this is the first reported functional heterologous expression of this pathway in S. cerevisiae. For the production of n-butyryl-CoA and n-hexanoyl-CoA, we adapted the butanol production pathway for our purposes and measured approximately 6 ”M intracellular concen-tration of butyryl-CoA and hexanoyl-CoA. For the feeding-dependent pathway towards propio-nyl-CoA we obtained intracellular concentrations of 5.3 ± 2.4 ”M while the feeding independ-ent 3-hydroxypropionate (3HP) pathway produced 8.5 ± 3.7 ”M. The extension of both propio-nyl-CoA pathways to produce methylmalonyl-CoA resulted only into production of 0.5 ± 0.1 ”M and 0.3 ± 0.3 ”M methylmalonyl-CoA. Not only but particularly for the production of methylmalonyl-CoA further optimization is required. To allow rapid pathway prototyping, op-timization and testing of alternative enzymes, we established a short-chain acyl-CoA Golden Gate collection. This collection enables together with the well-known Dueber yeast toolkit YTK collection the examination of different enzymes variants and to investigate optimized expres-sion of the corresponding genes. We conclude that the acyl-CoAs produced here, that are common building blocks of secondary metabolites, prepared the ground for prospective engineered production of a variety of natural products in S. cerevisiae. These acyl-CoA producing strains together with the short-chain acyl-CoA collection lay the foundation to further explore S. cerevisiae as a heterologous production host for high-value secondary metabolite production. Yeast communication toolkit The construction of multicellular networks was a proposed aim already early on in synthetic biology. Today, they still hold many promises like the division of labor or the performance of more complex tasks. Most of the systems so far were implemented in bacterial chassis and only a few examples exist for the eukaryotic chassis S. cerevisiae. Especially for gram-negative bacterial chassis, the quorum sensing system provides a large diversity of ready to use communication systems. Also, yeast species evolved a communication system using peptide-based pheromones to interact with the opposite mating type. Here, we employed the natural diversity of the pep-tide α-factor pheromones, the corresponding GPCR receptors, as well as of barrier proteases, that function similarly to quorum quenching enzymes. With the establishment of the Golden Gate yeast communication toolkit (YCTK) we provide a standardized collection of parts that al-low the rapid construction of multicellular networks in the model organism S. cerevisiae. The feasible designs are limitless as well as the number of envisioned applications. The YCTK collec-tion consists of responder (pheromone-responsive promoters), sender (mfα1 genes – α-factors), receiver (Ste2 receptors) and barrier (Bar1 proteases) parts. We characterized the dynamics of the pheromone-inducible promoters in the different mating-type strain backgrounds and de-termined the dose-response to the α-factor as well as their temporal response. The different promoters exhibited a range of different dynamics and properties that enable the implementa-tion of different prospective network design motives. The characterization results of the Ste2 receptors indicated that our collection is comprised of receptors with high α-factor promiscuity and of receptors with high substrate specificity for their cognate α-factor. Further we found that different Ste2 receptors exhibit different sensitivities towards the cognate as well as to non-cognate α-factors. The promiscuity of the Ste2 receptors did not correlate with the α-factor se-quences. Our likelihood analysis of the Ste2 receptors indicated that the ones closer related to S. cerevisiae tend to be stimulated by the α-factors of related species. Our likelihood analysis of the Ste2 receptors coincided with the phylogenetic relationships of the species. Interesting is also the finding that α-factors of species for which the receptor exhibited high α-factor promis-cuity stimulated only a few receptors. Even though only five of the selected barrier proteases were functionally expressed the characterization of the protease promiscuity was to our knowledge the most comprehensive study of its kind so far. Similar to the receptors we identi-fied promiscuous and substrate specific barrier proteases. The proposed model of a coevolution between the receptor and barrier proteases to recognize similar sequence motives of the α-factor was partly validated, however, the model is not universally applicable according to our results. The extended knowledge of the pheromone-inducible promoters, the crosstalk be-tween α-factors, receptors and barrier proteases, and an initial tunability test enabled proof of principle construction of multicellular systems using the YTCK collection. We engineered mul-ticellular logic gate-like population networks that allow the receiver cells to conditionally re-spond to the population composition. While the α-factor signaling motif is functional and was used to successfully establish OR and AND gate-like systems, signal disruption by a barrier pro-tease of a self-stimulating or a signaling motif requires further optimization. Overall, the reali-zation of multicellular networks using the YCTK was proven to be successful. To summarize, with the YCTK we provide a set of comprehensively characterized sender, re-ceiver, and barrier parts to facilitate the implementation of cell-cell and thus multicellular communication networks in S. cerevisiae

    Synthetische Biologie und die Transformation der Biologie

    Get PDF
    Die Synthetische Biologie (SynBio) ist eine interdisziplinĂ€re Forschungsdisziplin, welche die Biologie mit der Ingenieurwissenschaft verbindet. Damit verbunden ist eine Transformation von einer deskriptiven zu einer produktiven Wissenschaft – so sieht es jedenfalls unsere Mtgliedsgesellschaft, die German Association for Synthetic Biology (GASB e. V). Sie zieht dabei auch die Parallele zur Chemie, die sich vor mehr als 100 Jahren Ă€hnlich gewandelt hat

    Synthetic biology landscape and community in Germany

    No full text
    Despite its start in the early 2000s, synthetic biology is still overall perceived as a young discipline. In some countries, such as the US, synthetic biology is academically and industrially established, while in others, including Germany, it is still an upcoming field of research. Issues with funding schemes, commercial translation of technologies, public perception, and regulations need to be addressed to establish synthetic biology as a key discipline of the 21st century. This perspective article reviews the German and European synthetic biology landscape and how the German Association for Synthetic Biology (GASB) is addressing the above-mentioned challenges with its events and community-building activities.</p

    A synthetic C2 auxotroph of Pseudomonas putida for evolutionary engineering of alternative sugar catabolic routes

    No full text
    Acetyl-coenzyme A (AcCoA) is a metabolic hub in virtually all living cells, serving as both a key precursor of essential biomass components and a metabolic sink for catabolic pathways for a large variety of substrates. Owing to this dual role, tight growth-production coupling schemes can be implemented around the AcCoA node. Building on this concept, a synthetic C2 auxotrophy was implemented in the platform bacterium Pseudomonas putida through an in silico-informed engineering approach. A growth-coupling strategy, driven by AcCoA demand, allowed for direct selection of an alternative sugar assimilation route—the phosphoketolase (PKT) shunt from bifidobacteria. Adaptive laboratory evolution forced the synthetic P. putida auxotroph to rewire its metabolic network to restore C2 prototrophy via the PKT shunt. Large-scale structural chromosome rearrangements were identified as possible mechanisms for adjusting the network-wide proteome profile, resulting in improved PKT-dependent growth phenotypes. 13C-based metabolic flux analysis revealed an even split between the native Entner-Doudoroff pathway and the synthetic PKT bypass for glucose processing, leading to enhanced carbon conservation. These results demonstrate that the P. putida metabolism can be radically rewired to incorporate a synthetic C2 metabolism, creating novel network connectivities and highlighting the importance of unconventional engineering strategies to support efficient microbial production.L.F.C. was supported by the European Union's Horizon 2020 Research and Innovation Programme under the Marie SkƂodowska-Curie grant agreement No. 839839 (DONNA). The financial support from The Novo Nordisk Foundation through grants NNF20CC0035580, LiFe (NNF18OC0034818) and TARGET (NNF21OC0067996), the Danish Council for Independent Research (SWEET, DFF-Research Project 8021-00039B), and the European Union's Horizon 2020 Research and Innovation Programme under grant agreement No. 814418 (SinFonia) to P.I.N. is likewise gratefully acknowledged.Peer reviewe

    Production of (hydroxy)benzoate-derived polyketides by engineered <i>Pseudomonas </i>with <i>in situ</i> extraction

    No full text
    Polyketides from (hydroxy)benzoates are an interesting group of plant polyphenolic compounds, whose biotechnological production is so far underrepresented due to their challenging heterologous biosynthesis. Efficient heterologous production of 2,4,6-tri- and 2,3â€Č,4,6-tetrahydroxybenzophenone, 3,5-dihydroxybiphenyl, and 4-hydroxycoumarin by whole-cell biocatalysis in combination with in situ product extraction with an organic solvent was demonstrated. Production was highly dependent on the used CoA ligase and polyketide synthase type III. Therefore, different combinations of polyketide synthases and benzoate-CoA ligases were evaluated for their biosynthesis performance in the solvent-tolerant Pseudomonas taiwanensis VLB120. A solvent screening yielded 2-undecanone as biocompatible, extraction-efficient solvent with good phase separation. In aqueous-organic two-phase cultivations, this solvent extraction circumvents product instability in the aqueous cultivation medium, and it increases yields by reducing inhibitory effects. Complete de novo synthesis from glucose of all (hydroxy)benzoate-derived polyketides was achieved in two-phase cultivations with metabolically engineered strains. Additionally, mutasynthesis was applied to obtain fluorinated benzophenone derivatives

    Systematic mapping of chemoreceptor specificities for Pseudomonas aeruginosa

    No full text
    ABSTRACT The chemotaxis network, one of the most prominent prokaryotic sensory systems, is present in most motile bacteria and archaea. Although the conserved signaling core of this network is well characterized, ligand specificities of a large majority of diverse chemoreceptors encoded in bacterial genomes remain unknown. Here, we performed a systematic identification and characterization of new chemoeffectors for the opportunistic pathogen Pseudomonas aeruginosa, which has 26 chemoreceptors possessing most of the common types of ligand binding domains. By performing capillary chemotaxis assays for a library of growth-promoting compounds, we first identified a number of novel chemoattractants of varying strength. We subsequently mapped specificities of these ligands by performing Förster resonance energy transfer and microfluidic measurements for 16 hybrid chemoreceptors that combine the periplasmic ligand binding domains of P. aeruginosa receptors and the cytoplasmic signaling domain of the Escherichia coli Tar receptor. Direct binding of putative ligands to chemoreceptors was further confirmed using thermal shift assay and microcalorimetry. Altogether, the combination of methods enabled us to assign several new attractants, including methyl 4-aminobutyrate, 5-aminovalerate, L-ornithine, 2-phenylethylamine, and tyramine, to previously characterized chemoreceptors and to annotate a novel purine-specific receptor PctP. Responses of hybrid receptors to changes in pH further revealed a complex bidirectional pH sensing mechanism in P. aeruginosa, which involves at least four chemoreceptors PctA, PctC, TlpQ, and PctP. Our screening strategy could be applied for the systematic characterization of unknown sensory domains in a wide range of bacterial species. IMPORTANCE Chemotaxis of motile bacteria has multiple physiological functions. It enables bacteria to locate optimal ecological niches, mediates collective behaviors, and can play an important role in infection. These multiple functions largely depend on ligand specificities of chemoreceptors, and the number and identities of chemoreceptors show high diversity between organisms. Similar diversity is observed for the spectra of chemoeffectors, which include not only chemicals of high metabolic value but also bacterial, plant, and animal signaling molecules. However, the systematic identification of chemoeffectors and their mapping to specific chemoreceptors remains a challenge. Here, we combined several in vivo and in vitro approaches to establish a systematic screening strategy for the identification of receptor ligands and we applied it to identify a number of new physiologically relevant chemoeffectors for the important opportunistic human pathogen P. aeruginosa. This strategy can be equally applicable to map specificities of sensory domains from a wide variety of receptor types and bacteria
    corecore